Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2328298

ABSTRACT

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Subject(s)
COVID-19 , Common Cold , Humans , T-Lymphocytes , SARS-CoV-2 , Cross Reactions
2.
Front Immunol ; 14: 1182504, 2023.
Article in English | MEDLINE | ID: covidwho-2327051

ABSTRACT

Introduction: The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods: Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results: Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion: The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.


Subject(s)
COVID-19 , Common Cold , Humans , CD4-Positive T-Lymphocytes , Peptides , SARS-CoV-2 , T-Lymphocytes
4.
Cognition ; 235: 105413, 2023 06.
Article in English | MEDLINE | ID: covidwho-2309425

ABSTRACT

How people reason about disease transmission is central to their commonsense theories, scientific literacy, and adherence to public health guidelines. This study provided an in-depth assessment of U.S. children's (ages 5-12, N = 180) and their parents' (N = 125) understanding of viral transmission of COVID-19 and the common cold, during the first year of the COVID-19 pandemic. The primary aim was to discover children's causal models of viral transmission, by asking them to predict and explain counter-intuitive outcomes (e.g., asymptomatic disease, symptom delay) and processes that cannot be directly observed (e.g., viral replication, how vaccines work). A secondary aim was to explore parental factors that might contribute to children's understanding. Although even the youngest children understood germs as disease-causing and were highly knowledgeable about certain behaviors that transmit or block viral disease (e.g., sneezing, mask-wearing), they generally failed to appreciate the processes that play out over time within the body. Overall, children appeared to rely on two competing mental models of viruses: one in which viruses operate strictly via mechanical processes (movement through space), and one in which viruses are small living creatures, able to grow in size and to move by themselves. These results suggest that distinct causal frameworks co-exist in children's understanding. A challenge for the future is how to teach children about illness as a biological process without also fostering inappropriate animism or anthropomorphism of viruses.


Subject(s)
COVID-19 , Common Cold , Child , Humans , Child, Preschool , Pandemics , Parents
5.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: covidwho-2299035

ABSTRACT

A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.


Subject(s)
Asthma , COVID-19 , Common Cold , Enterovirus Infections , Picornaviridae Infections , Respiratory Tract Infections , Child , Humans , Infant , Rhinovirus , COVID-19/epidemiology , COVID-19/complications , Common Cold/epidemiology , Asthma/epidemiology , Asthma/etiology , Enterovirus Infections/complications , Risk Factors , Picornaviridae Infections/diagnosis
6.
Viruses ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: covidwho-2302639

ABSTRACT

The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte/genetics , COVID-19 Testing , COVID-19/diagnosis , Nucleocapsid , Spike Glycoprotein, Coronavirus/genetics
7.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: covidwho-2294102

ABSTRACT

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.


Subject(s)
COVID-19 , Common Cold , Humans , Mice , Animals , Homeodomain Proteins/genetics , Albuminuria , Tumor Necrosis Factor-alpha , Cytokine Release Syndrome , SARS-CoV-2/metabolism , Transcription Factors/genetics
8.
Epidemics ; 42: 100659, 2023 03.
Article in English | MEDLINE | ID: covidwho-2257865

ABSTRACT

Universities provide many opportunities for the spread of infectious respiratory illnesses. Students are brought together into close proximity from all across the world and interact with one another in their accommodation, through lectures and small group teaching and in social settings. The COVID-19 global pandemic has highlighted the need for sufficient data to help determine which of these factors are important for infectious disease transmission in universities and hence control university morbidity as well as community spillover. We describe the data from a previously unpublished self-reported university survey of coughs, colds and influenza-like symptoms collected in Cambridge, UK, during winter 2007-2008. The online survey collected information on symptoms and socio-demographic, academic and lifestyle factors. There were 1076 responses, 97% from University of Cambridge students (5.7% of the total university student population), 3% from staff and <1% from other participants, reporting onset of symptoms between September 2007 and March 2008. Undergraduates are seen to report symptoms earlier in the term than postgraduates; differences in reported date of symptoms are also seen between subjects and accommodation types, although these descriptive results could be confounded by survey biases. Despite the historical and exploratory nature of the study, this is one of few recent detailed datasets of influenza-like infection in a university context and is especially valuable to share now to improve understanding of potential transmission dynamics in universities during the current COVID-19 pandemic.


Subject(s)
COVID-19 , Common Cold , Influenza, Human , Humans , Influenza, Human/epidemiology , Pandemics , Cough/epidemiology , Common Cold/epidemiology , COVID-19/epidemiology
9.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2285509

ABSTRACT

Finding effective antiviral molecular strategies was a main concern in the scientific community when the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 as an easily transmissible and potentially deadly ß-coronavirus able to cause the coronavirus disease 19 (COVID-19), which famously led to one of the most worrying pandemics in recent times. Other members of this zoonotic pathogenic family were already known before 2019, but apart from the SARS-CoV, which was responsible of severe acute respiratory syndrome (SARS) pandemic in 2002/2003, and Middle East respiratory syndrome coronavirus (MERS-CoV), whose main impact on humans is geographically restricted to Middle Eastern countries, the other human ß-coronaviruses known at that time were those typically associated with common cold symptoms which had not led to the development of any specific prophylactic or therapeutic measures. Although SARS-CoV-2 and its mutations are still causing illness in our communities, COVID-19 is less deadly than before and we are returning to normality. Overall, the main lesson learnt after the past few years of pandemic is that keeping our bodies healthy and immunity defenses strong using sport, nature-inspired measures, and using functional foods are powerful weapons for preventing the more severe forms of illness caused by SARS-CoV-2 and, from a more molecular perspective, that finding drugs with mechanisms of action involving biological targets conserved within the different mutations of SARS-CoV-2-and possibly within the entire family of ß-coronaviruses-gives more therapeutic opportunities in the scenario of future pandemics based on these pathogens. In this regard, the main protease (Mpro), having no human homologues, offers a lower risk of off-target reactivity and represents a suitable therapeutic target in the search for efficacious, broad-spectrum anti-ß-coronavirus drugs. Herein, we discuss on the above points and also report some molecular approaches presented in the past few years to counteract the effects of ß-coronaviruses, with a special focus on SARS-CoV-2 but also MERS-CoV.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology
10.
Complement Ther Med ; 73: 102934, 2023 May.
Article in English | MEDLINE | ID: covidwho-2264580

ABSTRACT

INTRODUCTION: Kalmegh (Andrographis paniculata) is commonly used for treating uncomplicated Upper Respiratory Tract Infection (URTI) in complementary and alternative system of medicine. AP-Bio®(KalmCold®) is a standardized extract derived from the leaves of A. paniculata. This study was proposed to evaluate its efficacy using validated scales and objective measures. METHODS: Participants were randomized in a ratio of 1:1:1 to receive either AP-Bio® 200 mg/day, AP-Bio® 400 mg/day or placebo for 7 days. The primary outcome measure was Wisconsin Upper Respiratory Symptom Survey (WURSS-21) score. The secondary outcome measures were nasal mucous weight, nasal muco-ciliary clearance function and Interleukin-8 in nasal wash, as well as safety and tolerability. RESULTS: A total of n = 331 participants were screened and N = 300 participants were enrolled. The absolute WURSS-21 global score [mean (Standard Deviation - SD)] in the AP-Bio® 400 mg group [5.70 (5.31)] was less than the AP-Bio® 200 mg group [5.81 (4.83)] on Day-3. However, it was much higher in the placebo group [9.55 (14.27)]. AP-Bio® 400 mg group (Mean Difference - MD [Standard Error - SE] = -3.85 [1.52]; 95% CI = -6.85, - 0.85; adjusted p = 0.034) and 200 mg group (MD [SE] = -3.74 [1.51]; 95% CI = -6.73, - 0.76; adjusted p = 0.038) had significantly lower score than placebo. Similarly, on Day-3, the change in global score from baseline was significantly better in the AP-Bio® 400 mg group (MD [SE] = -3.91; [1.82] 95% CI = -7.50, - 0.32; adjusted p = 0.038) and AP-Bio® 200 mg group (MD [SE] = -3.84 [1.97]; 95% CI = -7.72, - 0.04; adjusted p = 0.044) in comparison to the placebo group. Nasal mucous weight, tissue paper counts used, and interleukin-8 showed a trend towards AP-Bio® groups having a favourable outcome when compared with placebo but did not reach statistical significance due to a small sample size. None of the study participants complained of any adverse physical symptoms. However, incident eosinophilia was noted in n = 20 participants on day 3. (n = 6 in AP-Bio® 200 mg group, n = 7 in Ap-Bio® 400 mg group and n = 13 in placebo group; p = 0.181). CONCLUSIONS: Participants in both the AP-Bio® dose groups showed positive tendency towards resolution of URTI symptoms when compared with placebo on Day-3 but not on Day-5 and Day-7.


Subject(s)
Common Cold , Pneumonia , Humans , Common Cold/drug therapy , Interleukin-8/therapeutic use , Plant Extracts/therapeutic use , Double-Blind Method , Pneumonia/drug therapy , Respiratory System
11.
J Infect Dis ; 223(10): 1833, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-2244984
13.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2232600

ABSTRACT

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 , Common Cold , Coronavirus 229E, Human , Coronavirus NL63, Human , Humans , Animals , Mice , Aged , SARS-CoV-2 , Cross Protection
15.
Sci Rep ; 13(1): 1616, 2023 01 28.
Article in English | MEDLINE | ID: covidwho-2221866

ABSTRACT

An optimization approach based on full factorial design was employed for developing an HPLC-UV method for simultaneous determination of a quaternary mixture used for the treatment of symptoms related to common cold and COVID-19. The quaternary mixture is composed of paracetamol, levocetirizine dihydrochloride, phenylephrine hydrochloride and ambroxol hydrochloride. The developed technique is a green, fast and simple method that uses isocratic elution of mobile phase consisting of 20:5:75 (v/v) of ethanol: acetonitrile: 2.5 mM heptane-1-sulphonic acid sodium salt at pH 6.5 [Formula: see text] 0.02. The chromatographic separation was carried out using Hypersil BDS Cyano LC Column (250 × 4.6 mm, 5 µm) with 230 nm UV detection and 1.0 mL/min. flow rate. Avoiding the routine methodology and resorting to the modern technology-represented in the usage of experimental design-allows rapid determination of the four drugs using the optimum quantity of chemicals to avoid any waste of resources. The quaternary mixture was eluted in less than 9 min., where retention times of paracetamol, levocetirizine dihydrochloride, phenylephrine hydrochloride and ambroxol hydrochloride were found to be 2.2, 3.8, 6.6 and 8.8 min., respectively. The calibration graphs of the four drugs were linear over concentration ranges of 50.0-500.0, 0.5-20.0, 0.5-20.0 and 0.5-100.0 µg/mL for paracetamol, levocetirizine dihydrochloride, phenylephrine hydrochloride and ambroxol hydrochloride, respectively with correlation coefficients higher than 0.999. The method is accurate with mean recoveries between 99.87 and 100.04%, precise, as %RSD for the intraday and interday precision were between 0.61 and 1.64% and very sensitive with limit of detections (LOD)'s between 29 and 147 ng/mL and limit of quantification (LOQ)'s between 95 and 485 ng/mL. The proposed method was successfully applied for the analysis of the four drugs either in raw materials or in prepared tablet with the least amount of chemicals within short time. It is also validated following International Conference on Harmonization Guidelines. The proposed method was found to be green according to the most common greenness assessment tools; NEMI, GAPI, Analytical Eco-Scale and AGREE methods. The advantages of the proposed method qualify it for routine analysis of the studied drugs either in single or co-formulated dosage form in quality control labs.


Subject(s)
Ambroxol , COVID-19 , Common Cold , Humans , Chromatography, High Pressure Liquid/methods , Acetaminophen , Phenylephrine/chemistry
17.
Influenza Other Respir Viruses ; 17(1): e13078, 2023 01.
Article in English | MEDLINE | ID: covidwho-2161657

ABSTRACT

BACKGROUND: The current SARS-CoV-2 pandemic highlights the need for an increased understanding of coronavirus epidemiology. In a pediatric cohort in Nicaragua, we evaluate the seasonality and burden of common cold coronavirus (ccCoV) infection and evaluate likelihood of symptoms in reinfections. METHODS: Children presenting with symptoms of respiratory illness were tested for each of the four ccCoVs (NL63, 229E, OC43, and HKU1). Annual blood samples collected before ccCoV infection were tested for antibodies against each ccCoV. Seasonality was evaluated using wavelet and generalized additive model (GAM) analyses, and age-period effects were investigated using a Poisson model. We also evaluate the risk of symptom presentation between primary and secondary infections. RESULTS: In our cohort of 2576 children from 2011 to 2016, we observed 595 ccCoV infections and 107 cases of ccCoV-associated lower respiratory infection (LRI). The overall incidence rate was 61.1 per 1000 person years (95% confidence interval (CI): 56.3, 66.2). Children under two had the highest incidence of ccCoV infections and associated LRI. ccCoV incidence rapidly decreases until about age 6. Each ccCoV circulated throughout the year and demonstrated annual periodicity. Peaks of NL63 typically occurred 3 months before 229E peaks and 6 months after OC43 peaks. Approximately 69% of symptomatic ccCoV infections were secondary infections. There was slightly lower risk (rate ratio (RR): 0.90, 95% CI: 0.83, 0.97) of LRI between secondary and primary ccCoV infections among participants under the age of 5. CONCLUSIONS: ccCoV spreads annually among children with the greatest burden among ages 0-1. Reinfection is common; prior infection is associated with slight protection against LRI among the youngest children.


Subject(s)
COVID-19 , Coinfection , Common Cold , Respiratory Tract Infections , Child , Humans , Infant, Newborn , Infant , Common Cold/epidemiology , SARS-CoV-2 , COVID-19/epidemiology
18.
Viruses ; 14(11)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2081985

ABSTRACT

Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Humans , SARS-CoV-2/genetics , Epitopes, T-Lymphocyte , Middle East Respiratory Syndrome Coronavirus/genetics , Vaccines, Attenuated , COVID-19 Vaccines , COVID-19/prevention & control , Alleles , BCG Vaccine , Indonesia/epidemiology , Spike Glycoprotein, Coronavirus/genetics
19.
Virologie (Montrouge) ; 26(4): 283-302, 2022 07 01.
Article in French | MEDLINE | ID: covidwho-2039521

ABSTRACT

For a large proportion of mankind, the word coronavirus only became a reality in the year 2020, as it was the cause of one of the worst pandemics of the last two centuries. Nevertheless, well before this ominous moment, human coronaviruses (HCoV) were well characterized respiratory pathogens since the 1960s. The most recent discovery of SARS-CoV and MERS-CoV showed that coronaviruses have a pandemic potential with important consequences. With the COVID-19 pandemic caused by SARS-CoV-2, this potential is now certain. Moreover, accumulating evidence support an association between coronaviruses and extra-respiratory pathologies, in particular of the central and peripheral nervous system. Linked or not with a neuro-invasive and neurotropic potential, it is now clear that coronaviruses can be associated with the development of neurological disorders.


Pour une grande partie de l'humanité, le terme coronavirus n'est devenu réalité qu'au début de l'année 2020, associé à une des plus importantes pandémies des deux derniers siècles. Pourtant, bien avant ce moment fatidique, les coronavirus humains (HCoV) étaient bien caractérisés en tant que pathogènes respiratoires depuis la fin des années 1960. Depuis le début du XXIe siècle, deux autres coronavirus pouvant infecter l'humain (SARS-CoV et MERS-CoV), ont montré que ces virus avaient un potentiel pandémique pouvant entraîner des conséquences importantes. Avec la survenue de la pandémie de Covid-19 créée par le SARS-CoV-2, ce potentiel ne fait aujourd'hui plus aucun doute. De plus, un nombre grandissant d'études supporte l'idée d'une association entre les coronavirus et diverses pathologies extra-respiratoires, en particulier au niveau des systèmes nerveux central et périphérique. Liés ou non à un véritable potentiel neuro-invasif et neurotrope, il apparaît maintenant de façon claire que les coronavirus peuvent être associés au développement de divers désordres neurologiques.


Subject(s)
COVID-19 , Common Cold , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , SARS-CoV-2
20.
Otolaryngol Clin North Am ; 55(5): 1035-1044, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2008015

ABSTRACT

The use of complementary and integrative medicine has increased . It is estimated that one-third of the population of the United States uses some form of alternative medicine. Physicians should consider integrative medicine therapies . Alternative medical therapies for the common cold and influenza include herbal supplements, dietary supplements, diet, and other adjunct therapies. However, it is important to research and study these therapies. Therefore, communication with patients and other health care providers is important. This will ensure effective and positive patient care experiences. Further randomized clinical trials are necessary to further establish the role of various alternative options.


Subject(s)
Common Cold , Complementary Therapies , Influenza, Human , Integrative Medicine , Common Cold/therapy , Dietary Supplements , Humans , Influenza, Human/therapy , United States
SELECTION OF CITATIONS
SEARCH DETAIL